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Abstract— Boundary-layer analysis is performed for mixed convection about a horizontal flat plate in a
saturated porous medium with aiding external flows, where the governing parameter is found to be
Ra/(RePr)*?. Similarity solutions are obtained for (i) horizontal flat plates at zero angle of attack with
constant heat flux and (ii) stagnation point flows about horizontal flat plates with wall temperature
varying as T, « x2. Temperature and velocity profiles for these two cases at selected values of Ra/(Re Pr)
are presented. The heat-transfer rate is shown to be asymptotically approaching the forced and free
convection values as the value of Ra/(RePr)*? approaches the limits of 0 and . The criteria for pure

3/2

and mixed convection about horizontal flat plates in porous media are established.

NOMENCLATURE

A, constant defined in equation (6a);

B, constant defined in equation (14b);

C, specific heat of the convective fluid;

£, dimensionless stream function defined by
equation (16);

Gr,  local Grashof number,
Gr = g|T,— T,,|BKx/v*;

g, acceleration due to gravity;

h, local heat-transfer coefficient;

K, permeability of the porous medium;

ks,  thermal conductivity of the saturated
porous medium;

m, constant defined in equation (14b);

n, porosity;

Nu, local Nusselt number, Nu = hx/k,,,;

D, pressure;

Pr, Prandtl number, Pr = v/a;

q, local heat-transfer rate;

Ra, modified local Rayleigh number,
Ra = po, gBK|T, — Tolx/pa;

Re,  local Reynolds number, Re = U, x/v;

T, temperature;

U.,, Darcy’s velocity in x-direction outside the
boundary layer;

u, Darcy’s velocity in x-direction;

v, Darcy’s velocity in y-direction;

X, coordinate in the horizontal direction;

¥, coordinate in the vertical direction.

Greek symbols

o, equivalent thermal diffusivity;

i coefficient of thermal expansion;

or, thermal boundary-layer thickness;

7, dimensionless similarity variable defined
in equation (15);
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nr,  value of iy at the edge of the thermal
boundary layer;

0, dimensionless temperature defined by
equation (17);
A, constant defined in equation (6a);
s viscosity of convective fluid;
v, kinematic viscosity of the convective fluid;
o, density of convective fluid;
&, velocity potential;
v, stream function.
Subscripts
0, condition at infinity;
f convective fluid;
S, unsaturated porous medium;
w, condition at the wall.
INTRODUCTION

THE STUDY of mixed (combined free and forced) con-
vection boundary-layer flows in a viscous fluid has
received much attention in the past two decades (see
Gebhart [1] for a review of the literature). Most of the
analyses for mixed convection about inclined surfaces
neglect the component of the buoyancy force normal
to the surface. This approximation will break down
completely when the inclined surface becomes horiz-
ontal where the buoyancy force is acting perpendicular
to the surface. Thus, mixed convection about horizon-
tal surfaces have been treated separately from those of
inclined surfaces. Although similarity solutions have
been obtained for mixed convection about inclined
surfaces in a viscous fluid (Sparrow et al. [2]), they do
not exist for mixed convection about horizontal
surfaces where series solutions have been obtained
instead [3-5].

The analogous problems of mixed convection in a
porous medium have important applications in
geothermal reservoirs where pressure gradients may be
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generated either by artificial withdrawal or injection
of fluids or by natural recharge or discharge of meteoric
water. Recently, a number of papers [6-11] have
appeared on the study of mixed convection in a porous
medium. In particular, the problem of mixed convec-
tion about inclined surfaces is considered by Cheng
[11] who neglects the normal component of buoyancy
force, and obtains similarity solutions for the special
case where the free stream velocity and wall tempera-
ture vary according to the same power function of
distance.

In this paper, we shall study mixed convection about
horizontal surfaces embedded in a porous medium
where gravitational force acts perpendicular to the sur-
face. Similarity solutions are obtained for aiding flows
over a horizontal flat plate with constant heat flux,
and aiding stagnation point flows about a horizontal
flat plate with wall temperature varying as x°. The
governing parameter for mixed convection about hori-
zontal surfaces in a porous medium is found to be
Ra/(RePr)3”* as opposed to Gr/Re for mixed convec-
tion about inclined surfaces [11]. The criteria for pure
and mixed convection about horizontal surfaces in
porous media are established.

ANALYSIS

Consider the combined free and forced convection
in a porous medium adjacent to a horizontal heated
or cooled surface with assisting external flow U (x)
as shown in Fig. 1. In the mathematical formulation
of the problem, we shall assume that (i) the convective
fluid and the porous medium are everywhere in local
thermodynamic equilibrium, (ii) the temperature of the
fluid is everywhere below boiling point, (iii) properties
of the fluid and the porous medium such as viscosity,
thermal conductivity, specific heats, thermal expansion
coefficient, and permeability are constant, and (iv) the
Bousinesq approximation can be applied. Under these
assumptions the governing equations are given by
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where the “+ 7 sign in equation (3) refers to the case
of a heated impermeable surface facing upward [Figs.
1(a) and (b)] while the “—" sign refers to the case of a
cooled impermeable surface facing downward [Figs.
1(c) and (d)]. In equations (1)-(5), u and v are the
Darcy’s velocities in the horizontal and vertical direc-
tions; p, 4 and f are the density, viscosity, and the
thermal expansion coefficient of the convecting fluid;
K is the permeability of the porous medium;
o = kyf(p, C)y is the equivalent thermal diffusivity
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t1G. 1. Coordinate systems.

with (p,C), denoting the product of density and
specific heat of the convecting fluid, and &, the thermal
conductivity of the saturated porous medium given by
km = (1 —njk,+nk, where n is the porosity of the
medium, k, and k, are the thermal conductivity of the
solid and the convecting fluid respectively; T, p and g
are the temperature, pressure and the gravitational
acceleration. The subscript “co” refers to the condition
at infinity.

The boundary conditions for the problem are

y=0, T,=T,+Ax", ¢=0,

u=U_(x),

»

{6a,b)
(7Ta,b)
where A > 0 and the “+” and “—" signs in equation
(6a)are for a heated impermeable surface facing upward
and for a cooled impermeable surface facing downward.
Equation (6a) shows that the prescribed wall tempera-
ture is a power function of distance from the origin.

We now assume that (i) convection takes place in
a thin layer adjacent to the heated or cooled surface,
and (ii) outside this layer density of the fluid can be
considered to be constant. Analogous to the classical
boundary-layer theory, we shall separate the problem
into two regions: the outer region where the fluid can
be treated as incompressible and the inner region where
density gradient exists and convection takes place.
Thus, for the outer region, equations (2) and (3) can
be written as

y—oo, T=T,

0 ;
u= ——i and v= ——, (8)
ox Oy
where ¢ = (K/u)(p+ pgy) is the velocity potential. Sub-
stituting equation (8) into equation (1), we have

V2 =0, (9a)

which is the Laplace equation for the outer region.
Eliminating ¢ from equation (8) and with the resulting
equation in terms of stream function i, we have

V2 =0,

where u = 0\/0y and v = — (6y/dx). From potential
flow theory, we know that the solution to equation
(10) for flow over a horizontal surface, and stagnation
point flow about a horizontal surface are ¥ = By and
¥ = Bxy which can be rewritten in a4 more compact

(10
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form as y = Bx™y (and consequently u = U = Bx™)
with m =0 and m = 1 for the two different external
flow conditions.

We now turn our attention to the inner region, i.e.
the boundary-layer region adjacent to the heated or
cooled impermeable surface where density gradient
exists, With boundary-layer approximations, equations
(1)-(5) can be rewritten as [12]

2 K T
7Y _ 1 Kea9b T 1y
dy u  0x
T 1(oyoT oy oT 12)
a2 a\dy dx ox dy)’
Boundary conditions in terms of i are
y=0, T,=T,+Ax% Z—"l =0, (13ab)
X
oy
y—=o, T=T,, u =_é;= U, = Bx™, (14ab)

where equation (14b) is the flow condition in the
outer region with m =0 for assisting flow over a
horizontal flat plate at zero incident, and m =1 for
stagnation point flow about a horizontal impermeable
surface.

To seek similarity solutions to equations (11) and
(12) with boundary conditions (13) and (14), we intro-
duce the following dimensionless variables

y= <U°°X)MX’ 5

o X
¥ = @Ux,x)'"2f (), (16)
0(n) = (T— T )T, — T,). (17

In terms of new variables, it can be shown that the
velocity components are given by

w=Ua f'n),
1/2
v=%(3“—iﬂ) [(=mynf —(1+m)f], (19

and the governing equations (11) and (12) become

Afa\"? —1
" _pngﬁ (ﬁ) x(21—1—3m)/2|‘10+m2 '10/:]’

(18)

uB B
(20)
1
o = 6 —¥ 19, 1)
with boundary conditions given by
n=0, 8=1, f=0, (22a,b)
noow, =0 f'=1. (23a,b)

It is apparent that equation (20)—(23) will be indepen-
dent of x if the exponent of x in equation (20)
vanishes, i.e.

A=(3m+1)/2 or m=(24—1)/3. (24)
Under this restricted condition, equation (20) and (21)
in terms of m become

R
- 2(77;@ [Bm+1)0+(m~1)n0], (25)

0" =3[(Bm+1)8f —(m+ 1)1,

f” =
(26)

which can also be written in terms of A to give

. Ra A=2N
= — —_——-(RePr)m [10 + (——3—)176 :l , 27
and

o= wff—@i)fe', 9

where
Ra  pogBKIT,— Tl x/pa _ P=gBKA (o +
(RePr)3i2 — (Uw x'>3/2 uB \B/’

a J

Equations (25) and (26) or equations (27) and (28) are
the governing equations for mixed convection about
horizontal impermeable surfaces in a porous medium
where m = 0 and 1 = 1/2 correspond to mixed flows
over a horizontal flat plate with T,,«(x)*, while m = 1
and A =2 correspond to stagnation point flow with
T, x2.

It is worth noting that the governing parameter for
mixed horizontal boundary-layer flows is Ra/(Re Pr)*?,
and that the limiting case of Ra/(RePr)*? = 0 corre-
sponds to forced boundary-layer flows. Let’s examine
the limiting case of Ra/(RePr)*? =0 in some detail.
For this special case, equations (20)—(23) are indepen-
dent of x for arbitrary values of m and A. Furthermore,
equation (20) can be integrated with the aid of equations
(22b) and (23b) to give

f'=1 and f=n. (29a,b)

Substituting equation (29) into equations (16), (18), (19)
and (21) yields

¥ = Bx"y, (30)
u=U, =Bx", v=—Bx""'y, (3la,b
and
1+
o =10 —2'3;10'. (32)

Equation (32) with equations (22a) and (23a) are the
governing equation and boundary conditions for tem-
perature distribution inside a thermal boundary layer
of a forced flow in a porous medium.

RESULTS AND DISCUSSION

Equations (25) and (26) or equations (27) and (28)
with boundary conditions (22) and (23) are integrated
numerically by means of the Runge-Kutta method
with a systematic guessing of 6'(0) and f'(0) by the
shooting technique. Numerical computations were
carried out for aiding flows with the values of
Ra/(RePr)*? from 0 to 15. Results for 8() and f*(n),
for A=1/2and m =0 as well as for 1 =2 and m =1
are presented in Figs. 2 and 3.

Of particular interest in geothermal applications are
the heat-transfer rate and the thermal boundary-layer
thickness. Consider first the local surface heat flux
along the horizontal impermeable surface which is
given by

1/2
- -k<93) =kAx2m<§) [—00)]. (33
=0 o
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F1G. 2. Dimensionless temperature profiles for mixed convection with aiding external flows: (1) horizontal
flat plate at zero angle of attack with constant heat flux (m = 0 and / = 1/2), (b} stagnation point flow
with T2 x? (m = 1 and /. = 2).
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F1G. 3. Dimensionless velocity profiles for mixed convection with aiding external flows: (a) horizontal
flat plate at zero angle of attack with constant heat flux (m = 0 and £ = 1/2). (b} stagnation point flow
with T2 x? (m = 1l and / = 2).

Table §. Values of [ - 0°(0)], f'(0) and 5y for aiding flows

i
!

m=0and 2= 1/2 m=1and 1 =2
Ruj(RePr)*? —0(0) 10) nr — ({0) 140) 0y
0 0.8862 1.000 32 1.595 1.000 20
0.6 1.028 1.474 29 1.863 1.578 1.9
1.0 1.102 1.747 2.8 2.004 1.916 1.8
2.0 1.249 2.348 26 2.291 2.666 1.7
50 1.530 3.799 22 2.879 4.495 1.5
8.0 1.761 4.999 20 3292 6.010 1.3
1.2

15.0 2.113 7.345 1.7 3.982 8.980

1
|
|
|
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Fi1G. 4. Heat-transfer results for mixed convection with

aiding external flows: {a) horizontal flat plate at zero angle

of attack with constant heat flux (m = 0 and A = 1/2) and
(b) stagnation point flow with T,,ax? (m = t and £ = 2).

where the values of [ -6(0)] for m=0and m=1 at
selected values of Ra/(Re Pr)®? are presented in Table 1.
Equation (33) shows that local surface heat flux is con-
stant for m = 0. Equating equation (33) to the definition
of logal heat transfer coefficient, ie. q = h(T,—T,),
we have

Nu
{RePr)'/?

where Nu = hx/k,,. Equation (34)form = 0andm = 1
is plotted in Fig. 4 as a function of Ra/(RePr)'/*. The
limiting cases of pure free convection and pure forced
convection can be shown as asymptotes in the same
figure. According to equation (34) and Table 1, the
expressions for pure forced convection [where
Ru/(RePr)*? = 0] are

=[—0(0)], (34)

N
(E—Pu')ﬁ — 08862 form=0and i =1/2, (35a)
err >
N
(E’PJ)W =1.595, form=1and A=2. (35b)
wy

The corresponding expressions for pure free convection
about a horizontal impermeable surface embedded in
a porous medium are [12]

N
08164, for 4 = 172,
(Ra)"
N
A 1571, for /= 2.
(Ra)l/
which can be rewritten as
Nu Ra 113
= 08164| ——— = 1/2. (36¢
(RePr)'? 6 {(RePr)?’/ZJ for =172, (36a)

Nu Ra 13
It is shown in Fig. 4 that equation (34) approaches the
forced and free convection limits [given by equations
(35) and (36) respectively] as the values of
Ra/(RePr)*? approach zero and infinity. The criteria
for pure or mixed convection about a horizontal
surface in a porous medium can be established if the
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5% deviation rule [2] is applied. It follows that

0 < Ra/(RePr)** < 0.16 forced convection
0.16 < Raf(RePr)®?* < 5 mixed convection
15 < Raf(RePr)*? < 0 free convection.

Consider next the expression for thermal boundary-
layer thickness. If ny is the value of # at the edge of
the thermal boundary layer, i.e. where 8(y) has a value
of 0.01, we have,

551 _ nr
x  (RePr)V*’

where the values of 71 for m =0 and A = 1/2 as well
asm=1and 4 =2 at selected values of Ra/(RePr)>?
are presented in Table 1. It is worth noting that for
stagnation point flow (m = 1 and 1 = 2), equation (37)
reduces to &7 = (o/B)'/*y; which is independent of x.
It will be of interest to show the values of (Re Pr)'/25;/x
in the free and forced convection limits. This is done
in Fig. 5 where the free convection asymptotes are
given by Cheng and Chang [12]

50
Ra/(RePr)*?
37
Ra/(RePr)*?

(37

(RePr)!28,/x = (i =1/2). (38a)

(RePr)' 2§ p/x = (i =2). (38b)
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Fi1G. 5. Dimensionless boundary-layer thickness parameter
for mixed convection about a horizontal flat plate.

CONCLUDING REMARKS

An analysis has been made for mixed convection in
horizontal boundary layer flows in a saturated porous
medium with aiding external flows (ie. B> 0). It is
found that the governing parameter for the problem
is Ra/(RePr)*? as opposed to Gr/Re which is the
governing parameter for mixed convection about in-
clined plates in a porous medium [ 11]. Similarity solu-
tions have been obtained for (i) mixed convection
about a horizontal flat plate at zero angle of attack
with constant heat flux, and (ii) mixed convection in
stagnation point flows about a horizontal flat plate
with T, .« x2. Itis also found that no similarity solution
is possible for mixed convection in horizontal
boundary-layer flows in a porous medium with oppos-
ing external flows (ie. B < 0).
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SOLUTIONS EN SIMILITUDE DE LA CONVECTION MIXTE POUR DES SURFACES
IMPERMEABLES HORIZONTALES DANS DES MILIEUX POREUX SATURES

Résumé—On conduit I'analyse de couche limite pour la convection mixte autour d’une plaque plane et
horizontale dans un milieu poreux saturé et avec des écoulements externes favorables: on a trouvé que
le paramétre fondamental est Ra/(RePr)*?. Des solutions en similitude sont obtenues pour (1) des
plaques planes horizon;a]es a angle d’attaque nul et a flux de chaleur constant, pour (2) des écoulements
de point d’arrét autour de plaques planes horizontales dont la température de surface varie proportion-
nellement a x>. Des profils de température et de vitesse sont présentés dans ces deux cas pour des
valeurs particuliéres de Ra/(RePr)*?. Le transfert thermique approche asymptotiquement celui de con-
vection forcée ou libre lorsque Ra/(RePr)*? tend vers les limites O ou oc. On etablit les critéres pour la
convection forcée ou mixte autour des plaques planes dans les milieux poreux.

AEHNLICHKEITSLOSUNGEN FUR DIE GEMISCHTE KONVEKTION
UBER EINER HORIZONTALEN, UNDURCHLASSIGEN OBERFLACHE
IN EINEM GESATTIGTEN PORGSEN MEDIUM

Zusammenfassung— Fiir die gemischte Konvektion iiber einer horizontalen, ebenen Platte in einem gesit-
tigten pordsen Medium mit zusatzlichen, von auBlen aufgebrachten Strémungen wird eine Grenzschicht-
untersuchung durchgefiihrt. Als bestimmender Parameter ergibt sich Ra/(RePr)*?. Aehnlichkeitslosungen
werden erhalten (1) fiir horizontale, lingsangestromte, ebene Platten mit konstanter Warmestromdichte
und (2) fiir Staupunktstromungen, um horizontale, ebene Platten mit einer Wandtemperaturverteilung
Tw ~ x%. Zu beiden Fillen werden fiir ausgewdhlte Werte von Ra/(RePr)>* Temperatur- und Gesch-
windigkeitsprofile angegeben. Filir Ra/(RePr)** gegen 0 bzw. 5o nihert sich der Wirmeiibergang
asymptotisch den Werten fiir die erzwungene bzw. freie Konvektion. Es werden Kriterien fiir reine und
gemischte Konvektion tiber horizontalen, ebenen Platten in pordsen Medien aufgestellt.

ABTOMO/IENILHBIE PEINEHUS /1 CAYVYASL CMEIIAHHOM KOHBEKLIMM
OT TOPU3OHTAJIbHBIX HEINMPOHUIAEMBIX THIACTUH B HACBILEHHBIX
TMMOPUCTBIX CPEOAX

Amnmoramms — [TpoBeieHO HccenoBanye NOTPAKMYHOIO CHOA NPH CMELUAHHOH KOHBEKLMM Y rOpH-
30HTANBHON NITOCKON ONACTHHLI B HACHILUEHHOK NOPHCTO! cpeae NMpH HANMYHU CIyTHOI'O BHEIIHETO
TedeHHs, AIA KOTOPOrO ONpENENAIOAM sBAseTcs napamerp Ra/(RePr)®'?, TMonyyens! aHanuTH-
4ECKHE PELUCHHS [JIfi TOPHIOHTAJLHBIX IVIOCKHMX IUTACTHH NPH HYJICBOM yIJjie aTakd M NOCTOAHHOM
TNONBOJE TEIUIa M IS 3aCTOWHBIX TEYEHHH Y TOPU3OHTAILHBIX IIOCKHX IUIACTHH C TeMIepaTypoit
CTeHKH, uamensiomeics kak T, aX?. TIpeacTaBneHsl TEMIEPaTYPHEIE H CKOPOCTHBIE NPOGUIH i
3THX JBYX CyuaeB NpH BhIOpaHHLIX 3HadveHHsAX Raf(RePr)3'%. Tloka3aHO, 4TO CKOPOCTh IEpEHOCA
Temia aCHMITOTHYECKH NPuUONUXKaercs K 3HAYEHHSM NPH CBOOOMHOM M BBIHYXACHHON KOHBEKUMH
o mepe Toro kax Ra/(RePr)*'? cTpemutca k npegenam O M oo, YcTaHOBJIEHB KPHTEPHH AN CIIyyas
YUCTOM ¥ CMEaHHOM KOHBEKUMH Y TOPU30HTANLHEIX MIOCKUX MAACTHH B OPHCTRIX CPelax.



